7-3 DATA CONVERSIONS 201

1 Converting from ASCII to Binary

Conversions from ASCII to binary usually start with keyboard entry. If a single key is typed, the conversion occurs
when a 30H is subtracted from the number. If more than one key is typed, conversion from ASCII to binary still
requires 30H to be subtracted, but there is one additional step. After subtracting 30H, the number is added to the
result after the prior result is first multiplied by 10.

The algorithm for converting from ASCII to binary is:
Divide
Begin with a binary result of 0.
Subtract 30H from the character typed on the keyboard to convert it to BCD.
Multiply the result by 10, and then add the new BCD digit.
Repeat steps 2 and 3 until the character typed is not an ASCII-coded number.

L

Example 7-25 illustrates a procedure (READN) used in a program that implements this algorithm. Here, the
binary number returns in the AX register as a 16-bit result, which is then stored in memory location TEMP. If a
larger result is required, the procedure must be reworked for a 32-bit addition. Each time this procedure is called,
it reads a number from the keyboard until any key other than O through 9 is typed.

EXAMPLE 7-25

;A program that reads one decimal number from the
;keyboard and stores the binary value at TEMP.

i

.MODEL SMALL ;select TINY model
0000 .DATA ;start DATA segment
0000 0000 TEMP DW ? ;define TEMP
0000 .CODE ;start CODE segment
.STARTUP ;start program
0017 E8 0007 CALL READN ;read a number
001A A3 0000 R MOV TEMP, AX ;save it in TEMP
.EXIT ;exit to DOS
;The READN procedure reads a decimal number from the
;keyboard and returns its binary value in AX.
0021 READN PROC NEAR
0021 53 PUSH BX ;save BX and CX
0022 51 PUSH CX
0023 B9 000A MOV CX,10 ;load 10 for decimal
0026 BB 0000 MOV BX,0 ;jclear result
0029 READN1:
0029 B4 01 MOV AH,1 ;jread key with echo
002B CD 21 INT 21H
002D 3C 30 CMP AL, ’'0’
002F 72 14 JB READN2 ;1f below ‘0’
0031 3C 39 CMP AL,’9’
0033 77 10 JA READN2 ;if above '9’
0035 2C 30 SUB AL, ‘0’ ;convert to ASCII
0037 50 PUSH AX ;save digit
0038 8B C3 MOV AX,BX ;multiply result by 10
003A F7 E1 MUL CX
003C 8B D8 MOV BX,AX
003E 58 POP AX
003F B4 00 MOV AH,0
0041 03 D8 ADD BX,AX ;add digit value to result

202 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

0043 EB E4 JMP READN1 ;repeat
0045 READN2 :
0045 8B C3 MOV AX,BX ;get binary result into AX
0047 59 POP CX ;restore CX and BX
0048 5B POP BX
0049 C3 RET
004A READN ENDP
END ;end of file

Displaying and Reading Hexadecimal

Hexadecimal data are easier to read from the keyboard and display than decimal data. These types of data are not
used at the applications level, but at the system level. System-level data are often hexadecimal, and must either be
displayed in hexadecimal form or read from the keyboard as hexadecimal data.

Reading Hexadecimal Dala. Hexadecimal data appear as 0 to 9 and A to F. The ASCII codes obtained from the
keyboard for hexadecimal data are 30H to 39H for the numbers O through 9, and 41H to 46H (A-F) or 61H to 66H
(a—f) for the letters. To be useful, a procedure that reads hexadecimal data must be able to accept both lowercase
and uppercase letters.

Example 7-26 shows two procedures: one (CONV) converts the contents of the data in AL from ASCII
code to a single hexadecimal digit, and the other (READH) reads a four-digit hexadecimal number from the key-
board and returns with it in register AX. This procedure can be modified to read any-sized hexadecimal number
from the keyboard.

EXAMPLE 7-26
;A program that reads a 4-digit hexadecimal number from
;the keyboard and stores the result in word-sized
;memory location TEMP.
.MODEL SMALL ;select SMALL model
0000 .DATA ;start DATA segment
0000 0000 TEMP DW ? ;define TEMP
0000 .CODE ;start CODE segment
.STARTUP ;start program
0017 E8 0007 CALL READH ;read hexadecimal number
001A A3 0000 R MOV TEMP, AX ;save it at TEMP
.EXIT ;exit to DOS
;The READH procedure that reads a 4-digit hexadecimal
;number from the keyboard and returns it in AX.
;This procedure does next check for errors and uses CONV.
0021 READH PROC NEAR
0021 51 PUSH CX ;save BX and CX
0022 53 PUSH BX
0023 B9 0004 MOV CX,4 ;load CX and SI with 4
0026 8B F1 MOV SI,CX
0028 BB 0000 MOV BX,0 ;clear result
002B READH1:
002B B4 01 MOV AH,1 ;read a key with echo
002D CD 21 INT 21H
002F E8 000A CALL CONV ;convert to binary
0032 D3 E3 SHL BX,CL
0034 02 D8 ADD BL,AL ;form result in BX
0036 4E DEC SI
0037 75 F2 JNZ READHI1 ;repeat 4 times
0039 8B C3 MOV AX,BX ;move result to AX

003B 5B POP BX ;restore BX and CX

7-3 DATA CONVERSIONS 203

003C 59 POP CX
003D C3 RET
003E READH ENDP

;The CONV procedure converts AL into hexadecimal.

003E CONV PROC NEAR

003E 3C 39 CMP AL,’9’
0040 76 08 JBE CONV2 ;i€ 0 through 9
0042 3C 61 CMP AL,’a’
0044 72 02 JB CONV1 :if uppercase A through F
0046 2C 20 SUB AL,20H ;convert to uppercase
0048 CONV1:
0048 2C 07 SUB AL,7
004A CONV2:
004A 2C 30 SUB AL,30H
004C C3 RET
004D CONV ENDP
END ;end of file

Displaying Hexadecimal Data. To display hexadecimal data, a number must be divided into four-bit segments
that are converted into hexadecimal digits. Conversion is accomplished by adding a 30H to the numbers 0 to 9 and
a 37H to the letters A to F.

A procedure (DSIPH) that displays the contents of the AX register on the video display appears in the pro-
gram of Example 7-27. Here, the number is rotated left so that the leftmost digit is displayed first. Because AX
contains a four-digit hexadecimal number, the procedure displays four hexadecimal digits.

EXAMPLE 7-27
;A program that displays the hexadecimal value in AX.
;This program uses DISPH to display a 4-digit value.
.MODEL TINY ;select TINY model
0000 .CODE ;start CODE segment
. STARTUP ;start program
0100 B8 OABC MOV AX, OABCH ;load AX with test data
0103 E8 0004 CALL DISPH ;display AX in hexadecimal
.EXIT ;exit to DOS
;The DISPH procedure displays AX as a 4-digit hex number.
010A DISPH PROC NEAR
010A 53 PUSH BX ;save BX and CX
010B 51 PUSH CX
010C Bl 04 MOV CL,4 ;load rotate count
010E B5 04 MOV CH,4 ;load digit count
0110 DISPH1:
0110 D3 CO ROL AX,CL ;position digit
0112 50 PUSH AX
0113 24 OF AND AL, OFH ;convert it to ASCII
0115 04 30 ADD AL,30H
0117 3C 39 CMP AL,'9’
0119 76 02 JBE DISPH2
011B 04 07 ADD AL,7
011D DISPH2:
011D B4 02 MOV 2H, 2 ;display hexadecimal digit
011F 8A DO MOV DL, AL
0121 CD 21 INT 21H
0123 58 POP AX

0124 FE CD DEC CH

204 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

0126 75 E8 JNZ DISPH1 ;repeat for 4 digits
0128 59 . POP CX ;restore registers
0129 5B POP BX
012Aa C3 RET
012B DISPH ENDP

END ;end of file

Using Lookup Tables for Data Conversions

Lookup tables are often used to convert data from one form to another. A lookup table is formed in the memory as
a list of data that is referenced by a procedure to perform conversions. In the case of many lookup tables, the XLAT
instruction can often be used to look up data in a table,
provided that the table contains eight-bit wide data and

its length is less than or equal to 256 bytes. - [:-a—:] -

Converting from BCD to 7-segment Code. One

simple application that uses a lookup table is BCD to f b

7-segment code conversion. Example 7-28 illustrates Control byte

a lookup table that contains the 7-segment codes for L| —— | [°| I p lel p !c| b Jil
the numbers O to 9. These codes are used with the 7- [7] g] g

segment display pictured in Figure 7-1. This 7-seg-

ment display uses active high (logic 1) inputs to light a e c

segment. The code is arranged so that the a segment is

in bit position 0 and the g segment is in bit position 6. d L

Bit position 7 is 0 in this example, but it can be used] S—
for displaying a decimal point. FIGURE 7-1 The 7-segment display.
EXAMPLE 7-28

0000 SEG7 PROC FAR

0000 53 PUSH BX

0001 BB 0008 R MOV BX,OFFSET TABLE
0004 2E: D7 XLAT CS:TABLE ;see text
0006 5B POP BX

0007 CB RET

0008 3F TABLE DB 3FH ;0
0009 06 DB 6 ;1
000A 5B DB 5BH ;2
000B 4F DB 4FH i3
000C 66 DB 66H ;4
000D 6D DB 6DH ;5
000E 7D DB 7DH ;6
000F 07 DB 7 ;7
0010 7F DB TFH ;8
0011 6F DB 6FH ;9
0012 SEG7 ENDP

The procedure that performs the conversion contains only two instructions and assumes that AL contains the
BCD digit to be converted to 7-segment code. One of the instructions addresses the lookup table by loading its ad-
dress into BX, and the other performs the conversion and returns the 7-segment code in AL.

Because the lookup table is located in the code segment and the XLAT instruction accesses the data segment
by default, the XLAT instruction includes a segment override. Notice that a dummy operand (TABLE) is added to
the XLAT instruction so that the (CS:) code segment override prefix can be added to the instruction. Normally,

7-3 DATA CONVERSIONS 205

XLAT does not contain an operand unless its default segment must be overridden. The LODS and MOVS instruc-
tions are also overridden in the same manner as XLAT by using a dummy operand.

Using a Lookup Table to Access ASCII Data. Some programming techniques require that numeric codes be con-
verted to ASCII character strings. For example, suppose that you need to display the days of the week for a cal-
endar program. Because the number of ASCII characters in each day is different, some type of lookup table must
be used to reference the ASCII-coded days of the week.

The program in Example 7-29 shows a table that references ASCII-coded character strings located in the code
segment. Each character string contains an ASCII-coded day of the week. The table references each day of the week.
The procedure that accesses the day of the week uses the AL register, and the numbers 0 to 6 to refer to Sunday
through Saturday. If AL contains a 2 when this procedure is called, the word “Tuesday” is displayed on the video
screen.

EXAMPLE 7-29
;A program that displays the current day of the
;week by using the system clock/calendar.
.MODEL SMALL ;select SMALL model
0000 .DATA ;start DATA segment
0000 OOOE R 0015 R DTAB DW SUN, MON, TUE, WED, THU, FRI, SAT
001C R 0024 R
002E R 0037 R
003E R
000E 53 75 6E 64 61 79 SUN DB ' Sunday$’
24
0015 4D 6F 6E 64 61 79 MON DB ‘Monday$’
24
001C 54 75 65 73 64 61 TUE DB 'Tuesday$’
79 24
0024 57 65 64 6E 65 73 WED DB 'Wednesday$ '
64 61 79 24
002E 54 68 75 72 73 64 THU DB ‘Thursday$’
61 79 24
0037 46 72 69 64 61 79 FRI DB 'Friday$’
24
003E 53 61 74 75 72 64 SAT DB 'Saturday$’
61 79 24
0000 .CODE ;start CODE segment
.STARTUP ;start program
0017 B4 2A MOV AH, 2AH ;get day of week
0019 ¢CD 21 INT 21H ;access DOS
001B E8 0004 CALL DAYS ;display day of week
.EXIT ;exit to DOS
0022 DAYS PROC NEAR
0022 52 PUSH DX ;save DX and SI
0023 56 PUSH SI
0024 BE 0000 R MOV SI,OFFSET DTAB ;address table
0027 B4 00 MOV AH,0 ;find day of week
0029 03 CoO ADD AX,AX
002B 03 FO ADD SI,AX
002D 8B 14 MOV DX, [SI] ;get day of week
002F B4 09 MOV AH,9 ;display string
0031 CD 21 INT 21H
0033 S5E POP SI ;restore registers
0034 5A POP DX

0035 C3 RET

206 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

0036 DAYS ENDP
END ;end of file

This procedure first addresses the table by loading its address into ‘the SI register. Next, the number in AL is
converted into a 16-bit number and doubled because the table contains two bytes for each entry. This index is then
added to SI to address the correct entry in the lookup table. The address of the ASCII character string is now
loaded into DX by the MOV DX,CS:[SI] instruction.

Before the INT 21H DOS function is called, the DS register is placed on the stack and loaded with the seg-
ment address of CS. This allows DOS function number 09H (display a string) to be used to display the day of the
week. This procedure converts the numbers 0 to 6 to the days of the week.

An Example Program Using Data Conversions

A program example is required to combine some of the data-conversion DOS functions. Suppose that you must
display the time and date on the video screen. This example program (see Example 7-30) displays the time as
10:45 A.M. and the date as Tuesday, May 14, 2002. The program is short because it calls a procedure that displays
the time and a second procedure that displays the date.

The time is available from DOS, using an INT 21H function call number 2CH. This returns with the hours
in CH and minutes in CL. Also available are seconds in DH and hundredths of seconds in DL. The date is avail-
able by using INT 21H function call number 2AH. This leaves the day of the week in AL, the year in CX, the day
of the month in DH, and the month in DL.

EXAMPLE 7-30
;A program that displays the time and date in the
;form: 10:45 A.M., Tuesday May 14, 2002.
.MODEL SMALL ;select SMALL model
.NOLISTMACRO ;don’t expand macros
0000 .DATA ;start CODE segment
0000 0026 R 002F R DTAB DW SUN, MON, TUE, WED, THU, FRI, SAT
0038 R 0042 R
004E R 0059 R
0062 R
000E 006D R 0076 R MTAB DW JAN, FEB, MAR, APR, MAY, JUN
0080 R 0087 R
008E R 0093 R
001A 0099 R OO09F R DW JUL, AUG, SEP, OCT,NOV, DCE
00A7 R 00B2 R
00BB R 00C5 R
0026 53 75 6E 64 61 79 SUN DB 'Sunday, $'
2C 20 24
002F 4D 6F 6E 64 61 79 MON DB 'Monday, $'
2C 20 24
0038 54 75 65 73 64 61 TUE DB ‘Tuesday, $'
79 2C 20 24
0042 57 65 64 6E 65 73 WED DB ‘Wednesday, $’
64 61 79 2C 20 24
004E 54 68 75 72 73 64 THU DB 'Thursday, $°’
61 79 2C 20 24
0059 46 72 69 64 61 79 FRI DB ‘Friday, $'
2C 20 24
0062 53 61 74 75 72 64 SAT DB 'Saturday, $’
61 79 2C 20 24
006D 4A 61 6E 75 61 72 JAN DB 'January $°’
79 20 24
0076 46 65 62 72 75 61 FEB DB 'February $'
72 79 20 24

0080 4D 61 72 63 68 20 MAR DB ‘March §°

7-3 DATA CONVERSIONS

24
0087 41 70 72 69 6C
24
008E 4D 61 79 20 24
0093 4A 75 6E 65 20
0099 4A 75 6C 79 20
009F 41 75 67 75 73
20 24
00A7 53 65 70 74 65
62 65 72 20 24
00B2 4F 63 74 6F 62

72 20 24

00BB 4E 6F 76 65 6D
65 72 20 24

00C5 44 65 63 65 6D
65 72 20 24

0000

0017 E8 0007

001A E8 00A3

0021

0021 B4 2C

0023 CpD 21

0025 B7 41

0027 80 FD 0OC

002A 72 05

002C B7 50

002E 80 ED 0OC

0031

0031 O0A ED

0033 75 02

0035 B5 0OC

0037

0037 8A C5

0039 B4 00

003B D4 0A

003D O0A E4

003F 74 0D

0041 80 C4 30

004E

004E 04 30

0064 8A C1

0066 B4 00

0068 D4 0A

006A 05 3030

006D 50

20

24
24
74
6D
65
62

62

SEP

ocT

NOV

DISP

TIMES

TIMES1:

TIMES2:

TIMES3:

207

DB ‘April $°

DB ‘May $'

DB ‘June $'

DB ‘July $'

DB ‘August §$°

DB ‘September $‘
DB ‘October $°
DB ‘November $°’

DB ‘December $'

.CODE ;start CODE segment
MACRO CHAR

PUSH AX ;;save AX and DX
PUSH DX

MOV DL, CHAR ; ;idisplay character
MOV AH,2

INT 21H

POP DX ;irestore AX and DX
POP AX

ENDM

.STARTUP ;start program

CALL TIMES ;jdisplay time

CALL DATES ;display date

.EXIT ;exit to DOS

PROC NEAR

MOV AH, 2CH ;get time from DOS
INT 21H

MOV BH, ‘A’ ;set 'A’ for AM
CMP CH,12

JB TIMES1 ;if below 12:00 noon
MOV BH, 'P’ ;set 'P’ for PM

SUB CH, 12 ;adjust to 12 hours
OR CH,CH ;test for 0 hour
JNE TIMES2 ;if not 0 hour

MOV CH, 12 ;change 0 hour to 12
MOV AL,CH

MOV AH,O0

AAM ;convert hours

OR AH,AH

Jz TIMES3 ;1f no tens of hours
ADD AH, 0’ ;convert tens

DISP AH ;display tens

ADD AL, ‘0’ ;jconvert units

DISP AL ;display units

DISP ':° ;display colon

MOV AL,CL

MOV AH,0

AAM ;convert minutes
ADD AX,3030H

PUSH AX

DISP AH ;display tens

208 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

0078

00BF

00CO

00C0o

00CO
00cz2
00C4
00C5
0oc7
00co
00CccC
00CE
00D0
00D2
00D4
00D5
00D6
00D8
00DA
00DC
00DE
00E1
00E3
00ES5
00E7
00E9
00EA
00EC
00EE
00F0
00F2
00F4

0101
0101

0121
0125
0127

013E
0140

0154
0154
0158
015A

58

C3

B4

cD

52
B4
03
BE
03
8B
B4
CD
5A
52
8A
FE
B4
03
BE
03
8B
B4
CD
SA
8A
B4
D4
0A
74
80

04

81
72
83

EB

81

8B
D4

2A
21

00
co

0000 R

FO
14
09

Cé6
c8
00
co

000E R

FO
14
09
21

Cc2
00
oA
E4
0D
c4

30

F9
19
E9

14

E9

cl
oa

30

07D0

64

076C

TIMES

DATES

DATES1:

DATES2:

DATES3:

POP

DISP
DISP
DISP
DISP
DISP
DISP
DISP
RET

ENDP

PROC

MOV
INT
PUSH
MOV
ADD
MOV
ADD
MOV
MOV
INT
POP
PUSH
MOV
DEC
MOV
ADD
MOV
ADD
MOV
MOV
INT
POP
MOV
MOV
AAM
OR
JZ
ADD
DISP

ADD
DISP
DISP
DISP
CMP
JB
SUB
DISP
DISP

DISP

DISP

SUB
MOV

AX
AL

NEAR

AH, 2AH
21H

DX
AH, 0
AX,AX
SI,OFFSET DTAB
SI,AX
DX, [SI]
AH, 9
21H

DX

DX
AL,DH
AL
AH, 0
AX,AX
SI,OFFSET MTAB
SI,AX
DX, [SI]
AH, 9
21H

DX

AL, DL
AH,0

AH,AH
DATES1
AH, 30H
AH

CX,2000
DATES2
CX,100
I2!

IOI
DATES3

ry
rg

CX,1900
AX,CX

;display units
;display space
;display ‘A’ or ‘P’
;display .

;display M
;display .

;display space

;get date from DOS

;get day of week
;address day table

;address day of week
;display day of week

;get month

;address month table

;address month
;display month

;get day of month
;convert to BCD

;if tens is O
;convert tens
;display tens

;convert units
;display units
;display comma
;display space

;test for year 2000
;if below year 2000
;scale to 1900 - 1999
;display 2

;display O

;display 1
;display 9
;scale to 00 - 99

;convert to BCD

7-3 DATA CONVERSIONS

209

015C 05 3030 ADD AX,3030H ;convert to ASCII
DISP AH ;display tens
DISP AL ;display units

0173 C3 RET

0174 DATES ENDP
END ;end of file

This procedure uses two ASCII lookup tables that convert the day and month to ASCII character strings. It
also uses the AAM instruction to convert from binary to BCD for the time and date. The displaying of data is han-
dled in two ways: by character string (function 09H) and by single character (function 06H).

The memory model (SMALL) consists of two segments: .DATA and .CODE. The data segment contains the
character strings used with the procedures that display time and date. The code segment contains TIMES and
DATES procedures, and a macro (DISP) that displays an ASCII character. The main program is very short and

consists of two CALL instructions. The year 2000 problem is corrected
in this program, but not the year 2100 problem.

Numeric Sort Program

At times, numbers must be sorted into numeric order. This is often ac-
complished with a bubble sort. Figure 7-2 shows five numbers that are
sorted with a bubble sort. Notice that the set of five numbers is tested
four times with four passes. For each pass, two consecutive numbers are
compared and sometimes exchanged. Also notice that during the first
pass, there are four comparisons, during the second three, etc.

Example 7-31 illustrates a program that accepts 10 numbers from
the keyboard (0-65535). After these 16-bit numbers are accepted and
stored in memory section ARRAY, they are sorted by using the bubble-
sorting technique. This bubble sort uses a flag to determine whether any
numbers were exchanged in a pass. If no numbers were exchanged, the
numbers are in order and the sort terminates.

EXAMPLE 7-31

.MODEL SMALL

6 6 6 6 6
9 9 1 1 1
1 1 9 3 3 Pasl
3 3 3 9 2
2 2 2 2:]9

3 3 6 2 Pass 2
1 1
3 2
2:-]3 Pass 3
6 6
9 9

FIGURE 7-2 A bubble sort
showing data as they are sorted.
Note: Sorting five numbers may
require four passes.

0000 .DATA
0000 000A [ARRAY DW 10 DUP (?)
;array
0000
]
0014 OD OA 45 6E 74 65 MES1 DB 13,10, 'Enter 10 numbers:’,13,10,10,'S$"’

72 20 31 30 20 6E
75 6D 62 65 72 73
3A OD 0A 0A 24

002B OD 0A 0A 53 6F 72 MES2 DB 13,10,10, ‘Sorted Data:’,13,10,10,'$"’

74 65 64 20 44 61
74 61 3A 0D OA 0A
24
0000 .CODE

DISP MACRO PARA

PUSH AX

MOV AH, 6
MOV DL, PARA
INT 21H

210 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

POP AX

ENDM
GET MACRO

.REPEAT
MOV AH,6
MOV DL,-1
INT 21H
.UNTIL (AL>='0’ && AL <='9‘) || AL==13 || AL==',"’
DISP AL
.IF AL==13
DISP 10
.ENDIF

JIF AL>='0' && AL<='9’
SUB AL,’0’

.ENDIF

ENDM

STRING MACRO WHERE

MOV DX, OFFSET WHERE

MOV AH,9
INT 21H
ENDM

. STARTUP

STRING MES1

001lE FC CLD
001F B9 000A MOV CX,10
0022 BF 0000 R MOV DI,OFFSET ARRAY
0025 8C D8 MOV AX,DS
0027 B8E CO MOV ES,AX
.REPEAT
0029 EB8 0026 CALL GETN ;get -10 numbers
.UNTILCXZ
STRING MES2
0035 E8 008B CALL SORT ;sort 10 numbers
0038 B9 0009 MOV CX,9
003B BE 0000 R MOV SI,OFFSET ARRAY
.REPEAT ;display 10 numbers
003E ES8 0061 CALL DISPN
DIsp ‘,’
.UNTILCXZ
004B EB8 0054 CALL DISPN
.EXIT
0052 GETN PROC NEAR
0052 BD 000A MOV BP,10
0055 BB 0000 MOV BX, 0
.WHILE 1
GET
.BREAK .IF AL==13 || AL==',’
0094 93 XCHG .AX,BX
0095 F7 ES5 MUL BP
0097 93 XCHG AX,BX
0098 B4 00 MOV AH, 0
009A 03 D8 ADD BX,AX
. ENDW
009E 8B C3 MOV AX, BX

00A0 AB STOSW

7-4

00AL
00A2
00A2
00A2
00A5
00A6
00A7
00aA
00AC
00B1

00B6

0o0c2
00C3
00C3
00C3
00Ce6
oocs

00CB

00CD
00CE

00D2
00D4
00D7
00D9
00DD

00E6

00E7

C3

BB
53
AD

BA
F7
52

58

04

C3

BB

8B
BE
B2

AD
3B

8B
89
89
FE

C3

INTERRUPT HOOKS

000Aa

0000
F3

30

0009

CB
0000 R

04

2C
6C FE
04
c2

RET

GETN ENDP

DISPN PROC NEAR
MOV BX, 10
PUSH BX
LODSW
.REPEAT
MOV DX, 0
DIV BX
PUSH DX
.UNTIL AX==0
-WHILE 1
POP AX
.BREAK .IF AL==10
ADD AL, 0’
DISP AL
. ENDW
RET
DISPN ENDP
SORT PROC NEAR
MOV BX,9
.REPEAT

MOV CX,BX

MOV SI,OFFSET ARRAY

MOV DL, O
.REPEAT
LODSW
CMP AX, [SI]
.IF !CARRY?
MOV BP, [SI)
MOV [SI-2],BP
MOV [SI],AX
INC DL
.ENDIF
.UNTILCXZ
DEC BX
.UNTIL BX==0 || DL==0
RET

SORT ENDP
END

211

Once the numbers are sorted, they are displayed on the video screen in ascénding numerical order. No pro-

vision is made for errors as each number is typed. The program terminates after sorting one set of 10 numbers and
must be invoked again to sort 10 new numbers.

-4

INTERRUPT HOOKS

Hooks are used to tap into or intercept the interrupt structure of the microprocessor. For example, we might hook
into the keyboard interrupt so that we can detect a special keystroke called a hot key. Whenever the hot key is
typed, we can access a terminate and stay resident (TSR) program that performs a special task. Some examples of
hot key applications are pop-up calculators and pop-up clocks.

212 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

Intercepting an Interrupt

In order to intercept an interrupt, we must use a DOS function call that reads the current address from the in-
terrupt vector. DOS function call number 35H is used to read the current interrupt vector and DOS function
call number 25H is used to change the address of the current vector. In both DOS function calls, AL indi-
cates the vector type number (0OH-FFH) and AH indicates the DOS function call number.

When the vector is read by using function 35H, the offset address is returned in register BX and the
segment address is in register ES. These two registers are saved so that they can be restored when the inter-
rupt hook is removed from memory. When the vector is set, it is set to the address stored at the memory lo-
cation addressed by DS:DX.

The process of installing an interrupt handler through a hook is illustrated in the program of Example
7-32. This program intercepts the divide error interrupt by first reading the current interrupt vector address
and storing it into a double-word memory location for access by the new interrupt service procedure. Next,
the address of the new interrupt service procedure, stored in DS:DX, is placed into the vector using DOS
function call number 25H.

EXAMPLE 7-32
;A sequence of instructions that show the installation
;or a new interrupt for vector 0 (divide error).
;Note this is not a complete program.
.MODEL TINY
0000 .CODE
.STARTUP
0100 EB 05 JMP MAIN ;skip
0102 00000000 ADDR DD ? ;old interrupt vector
0106 NEW PROC FAR ;new interrupt procedure
0106 CF IRET ;do nothing interrupt
0107 NEW ENDP
0107 MAIN:
0107 8C C8 . MOV AX,CS ;address CS with DS
0109 8E D8 MOV DS,2AX
;get vector 0 address
010B B8 3500 MOV AX,3500H
010E CD 21 INT 21H
;save vector address at ADDR
0110 89 1E 0102 R MOV WORD PTR ADDRESS, BX
0114 8C 06 0104 R MOV WORD PTR ADDRESS+2,ES
;install new interrupt vector 0 address
0118 B8 2500 MOV AX,2500H
011B BA 0106 R MOV DX,OFFSET NEW
011E CD 21 INT 21H

;other installation software continues here

7-4 INTERRUPT HOOKS 213

VCC
10K ;
T Timer 0
—— CLK
IRQ Vector 8 (18.2 Hz
Gate Out Q r8()
Timer 1
CLK
Gate Out ———__ DRQO (DRAM refresh).
Timer 2
1,193,180 Hz CLK o VvCC
PBO Gate ut
1 2N2907
3
PB1 2

Speaker

FIGURE 7-3 The speaker and timer circuit in the personal computer (I/O ports 40—43H
program the timer, and I/O port 61H programs PBO and PB1).

Example TSR Alarm

A simple example showing an interrupt hook and TSR causes a beep on the speaker after one hour or one-half
hour. We all seem to get lost in computer processing, and this program makes it easy to keep track of time because
of the audible beep.

The beep is caused by using timer 2 of the timer found inside the PC in order to generate an audio tone at the
speaker. (See Section 12-5 for a discussion of the timer and see Figure 73 for its connection in the computer.)
Programming timer 2 with a particular beep frequency or tone is accomplished by programming timer 2 with
1,193,180, divided by the desired tone. For example, if we divide 1,193,180 by 800, the speaker generates an 800
Hz audio tone. See the BEEP procedure (shown in Example 7-33) for programming the timer, and turning the
speaker on and off after a short wait determined by the number of clock ticks. This procedure uses six clock ticks
to produce a beep lasting !/3 second. Note that each clock tick occurs about 18.2 times a second (the actual time is
closer to 18.206). This is accomplished by using the user wait timer locations in the first segment of the memory.
The user wait timer is updated 18.2 times per second by the computer so that it can be used to time events. The pro-
gram that uses the BEEP procedure causes an audio tone of 1000 Hz, 1200 Hz, and 1400 Hz (each with a 1/3-
second duration) to repeat four times.

EXAMPLE 7-33
;A program that beeps the speaker with some sample audio
;tones that each have a duration of 1/3 second.
.MODEL TINY
0000 .CODE
. STARTUP
0100 B8 0000 MOV AX,0
" 0103 B8E D8 MOV DS,AX ;address segment 0000H
0105 B9 0004 MOV CX,4 ;set count to 4

0108 E4 61 IN AL, 61H ;enable timer and speaker

214 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

010a 0C 03 OR AL, 3
010C E6 61 OUT 61H,AL
010E MAIN1:
010E BB 03ES8 MOV BX,1000
0111 E8 0018 CALL BEEP
0114 BB 04BO MOV BX,1200
0117 E8 0012 CALL BEEP
011A BB 0578 MOV BX,1400
011D E8 000C CALL BEEP
0120 E2 EC LOOP MAIN1
0122 E4 61 IN AL, 61H
0124 34 03 XOR AL,3
0126 E6 61 OUT 61H,AL
.EXIT

7

;set PBO and PBl

;select 1000 Hz tone
;select 1200 Hz tone
;select 1400 Hz tone
;repeat 4 times

;turn speaker off
;clear PBO and PBl

:The BEEP procedure programs timer 2 to beep the speaker
;for 1/3 of a second with the frequency BX.

;***input parameters***
;BX = desired audio tone
;***uses***

;WAITS procedure to wait for 1/3 second

012cC BEEP PROC NEAR

;beep speaker 1/3 second
012C B8 34DC MOV AX,34DCH ;load AX with 1,193,180
012F BA 0012 MOV DX, 12H
0132 F7 F3 DIV BX ;£find count
0134 E6 42 OUT 42H,AL ;program timer 2
0136 8A C4 MOV AL, AH
0138 E6 42 OUT 42H,AL
013A E8 0001 CALL WAITS ;wait 1/3 second
013D C3 RET

013E BEEP ENDP
;the WAITS procedure waits 1/3 of a second
;***uses***

;memory doubleword location 0000:46CH to time the wait

013E WAITS

PROC NEAR
013E BA 0006 MOV DX, 6 ;number of clock ticks
0141 BB 0000 MOV BX,0
0144 03 16 046C ADD DX,DS:[46CH] ;get tick count plus time
0148 13 1E 046E ADC BX,DS:[46EH]
014cC WAIT1: .
014C 8B 2E 046C MOV BP,DS: [46CH] ;test for elapsed time
0150 Al 046E MOV AX,DS:[46EH]
0153 2B EA SUB BP,DX
0155 1B C3 SBB AX,BX
0157 72 F3 JC WAIT1 1keep testing
0159 C3 RET
015A WAITS ENDP
END

The CHIME program (see Example 7-34) hooks into interrupt vector 8 and beeps the speaker once each
half-hour and twice on the hour. This program is a TSR and remains active until the computer is turned off. Note
how the TSR is installed and how the interrupt vector is hooked. Also notice that the normal interrupt vector 8 pro-
cedure continues to execute, even as the beeper is activated.

7-4

EXAMPLE 7-34

0000
0100

0103
0104
0108
0109
010A

010B
010B

0111
0113
0118
0118
0119
011E

0124
0125

012B
012D
012E
012F
0130
0132
0134
0137
0139
013C
013E
0141
0143
0146

014cC
014E
014E
0151

0157
0159
0159

015F
0161
0166
0168
0168

016E
0170

E9 OOCE
03E8

00
00000000
00

00

00

2E: 80 3E
00

74 05

2E: FF 2E
9C

2E: FF 1E
2E: C6 06
01

FB

2E: 80 3E
00

75 2C

50

51

52

B4 02

CD 1A

80 FE 00
75 68

80 F9 00
74 10

80 F9 30
75 5E

E8 0065
2E: Cé6 06
01

EB 53

E8 005A
2E: C6 06
02

EB 48

2E: 80 3E
00

74 07

2E: FE 0OE
EB 3C

2E: 80 3E
00

75 1C

2E: FE OE

INTERRUPT HOOKS

;A terminate and stay resident program that hooks into
;interrupt vector 8 to beep the speaker one time per

;half-hour and two times per hour.
;***must be assembled as a

;version 5.10 of MASM

TONE
COUNT
ADDS8
PASS
BEEP
FLAG
VECS8
010A R
0104 R
VEC81:
0104 R
010A R

0108 R

0108 R

VEC82:

0108 R

VEC83:
0103 R

0103 R
VEC84:

0109 R

0108 R

.MODEL TINY
.CODE
.STARTUP
JMP INSTALL
EQU 1000
DB 0

DD ?

DB 0

DB 0

DB 0

PROC FAR

CMP CS:FLAG,O0

JE VECS81
JMP CS:ADDS

PUSHF
CALL CS:ADDS8
MOV CS:FLAG,1

STI
CMP CS:PASS,0

JNE VECS83
PUSH AX
PUSH CX
PUSH DX
MOV AH,2
INT 1AH
CMP DH,O
JNE VECS86
CMP CL,O
JE VEC82
CMP CL,30H
JNE VEC86
CALL BEEPS
MOV CS:PASS,1

JMP VEC86

CALL BEEPS
MOV CS:PASS, 2

JMP VEC86

CMP CS:COUNT, 0
JE VEC84

DEC CS:COUNT
JMP VECS88

CMP CS:BEEP,0

JNE VEC85
DEC CS:PASS

.COM file*** for use with

;install interrupt
;set tone at 1000 Hz
;elapsed time counter
;0ld vector address
;1 or 2 beeps

;beep or silent

;busy flag

;interrupt procedure
;test busy flag

;if not busy
;if busy do normal INT 8

;do normal INT 8

;show busy

;allow other interrupts
;1f beep counter active
;save registers

;get time from BIOS

;is it 00 seconds

;not time yet, so return
;test for hour

;if hour beep 2 times
ijtest for half-hour

;if not half-hour

;start speaker beep

;set number of beeps to 1

;end it

;start speaker beep
;set number of beeps to 2

;end it

;test for end of delay

;if time delay has elapsed

;end it
;test beep on

;if beep is on
itest for 2 beeps

215

216 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

0175 74 2D JzZ VECS88 ;if second beep not needed
0177 2E: C6 06 0103 R MOV CS:COUNT, S ;reset count
09
017D 2E: C6 06 0109 R MOV CS:BEEP,1 ;beep on for second beep
01 -
0183 50 PUSH AX
0184 E4 61 IN AL, 61H ;enable speaker for beep
0186 0C 03 OR AL, 3
0188 E6 61 OUT 61H,AL
018A EB 17 JMP VEC87 ;end it
018C VEC85:
018C 2E: C6 06 0103 R MOV CS:COUNT, 9 ;reset count
09
0192 2E: C6 06 0109 R MOV CS:BEEP,0 ;show beep is off
00
0198 50 PUSH AX
0199 E4 61 IN AL, 61H ;disable speaker
019B 34 03 XOR AL,3
019D E6 61 OUT 61H,AL
019F EB 02 JMP VECS87 ;end it
01al VEC86:
01Aa1 5aAa POP DX ;jrestore registers
01a2 59 POP CX
01Aa3 VEC87:
01A3 58 POP AX
01a4 VECS88:
01A4 2E: C6 06 010A - MOV CS:FLAG,0 ;show not busy
00
01AA CF IRET ;interrupt return

01AB VECS8 ENDP

;The BEEPS procedure programs the speaker for the

; frequency stored as TONE using an equate at assembly
;time. The duration of the beep is 1/2 second.
;***uses registers AX, CX, and DX***

01AB BEEPS PROC NEAR ;beep speaker

0lAB 2E: 8B OE 03ES8 MOV CX,CS:TONE ;set tone

01BO B8 34DC MOV AX,34DCH ;load AX with 1,193,180

01B3 BA 0012 MOV DX, 12H

01B6 F7 F1 DIV CX ;calculate count

01B8 E6 42 OUT 42H,AL ;program timer 2

01BA 8A C4 MOV AL,AH

01BC E6 42 OUT 42H,AL

01BE E4 61 IN AL, 61H ; speaker on

01Cc0 0OC 03 OR AL,3

01C2 E6 61 OUT 61H,AL

01C4 2E: C6 06 0103 R MOV CS:COUNT, 9 ;set count for 1/2 second
09

01CA 2E: C6 06 0109 R MOV CS:BEEP,1 ;indicate beep is on
01 .

01D0 C3 RET

01D1 BEEPS ENDP

01Dp1 INSTALL: ;install interrupt VECS8

01D1 8C C8 MOV AX,CS ;overlap CS and DS

01D3 8E D8 MOV DS, AX

01D5 B8 3508 MOV AX,3508H ;get current vector 8

01D8 CD 21 INT 21H ;and save it

7-4 INTERRUPT HOOKS 217

01DA 89 1E 0104 R MOV WORD PTR ADDS8, BX
01DE 8C 06 0106 R MOV WORD PTR ADD8+2,ES
01E2 B8 2508 MOV AX,2508H
01E5 BA 010B R MOV DX, OFFSET VECS8 ;address interrupt VECS
01E8 <CD 21 INT 21H ;install vector 8
01EA BA 01D1 R MOV DX,OFFSET INSTALL ;f£ind paragraphs
01ED Bl 04 MOV CL,4
01lEF D3 EA SHR DX,CL
01F1 42 INC DX
01F2 B8 3100 MOV AX,3100H ;exit to DOS as TSR
01F5 CD 21 INT 21H

END

The CHIME program uses several memory locations as flags to signal the operation of the interrupt service
procedure. The first flag tested by CHIME is the busy flag (FLAG), which indicates that a part of the interrupt
service procedure is active. If FLAG = 1 (busy condition), the procedure jumps to the normal vector 8 interrupt
(JMP CS:ADDS), which ends VEC8’s execution. If FLAG = 0 (not busy), the interrupt service procedure
continues at VEC81. The default address for all direct memory data is the data segment. In the TSR software used
in this example and others, it is important to use the segment override prefix (CS:) to ensure that the program
addresses data in the code segment, where it appears.

At VEC81, the normal vector 8 interrupt is executed with a forced interrupt call (PUSHF followed by a
CALL CS:ADDS). Upon return from the normal vector 8 interrupt (required to keep accurate time), the busy flag
is set to show a busy condition (FLAG = 1) and other interrupts are enabled with the STI instruction.

The PASS flag is now tested to see if the VEC8 procedure is currently beeping the speaker. If PASS = 0 (not
beeping speaker), the time of day is retrieved from BIOS by using the INT 1AH instruction. It is important not to
access DOS from within a TSR or interrupt service procedure. If DOS is accessed at this time, it may be in the
process of executing an operation that affects the interrupt. This would cause the program to crash. The INT 1AH
instruction returns the number of seconds (DH), minutes (CL), and hours (CH) in BCD form. After obtaining the
current time, the number of seconds is tested for zero. If it is not zero seconds, the interrupt procedure ends. If it is
zero seconds, then CL is tested for 00 minute (hour) and 30 minutes. If either case is true, the speaker is enabled
and TONE is programmed in the timer by a call to BEEPS. If neither case is true, the interrupt ends. Notice that the
BEEPS procedure programs timer 2, enables the speaker, and sets the count to 9.

The time delay counter (COUNT) is decremented each time the interrupt occurs. If the count reaches zero,
the procedure tests BEEP to control the speaker. If the speaker is beeping, the procedure turns it off and resets the
time delay count to 9. If the speaker is not beeping, the procedure tests PASS to determine if another beep is re-
quired on the hour. The time delay is !/2 second (COUNT = 9) in this program and cannot be less. If a delay of less
than '/2 second is chosen, the speaker will beep twice, for both the hour and half hour. The reason is that the clock
(INT 1AH) is checked for the zero second. If a time delay of less than !/2 second is used, the half-hour will be
picked up twice.

The TSR program is loaded into memory at the DOS command line by typing the name of the program; in
this case, the program is called CHIME. If DOS version 5.0 or 6.X is in use, you can load CHIME into the upper
memory or high memory area by typing LOADHIGH CHIME. Once this program loads into memory, it remains
in the background, beeping off the time until the power to the computer is disconnected or until it is rebooted. This
1s an excellent, not too annoying addition to the system to keep track of time. The next section of the text describes
hot keys. If desired, a hot key could be used to enable and disable CHIME.

Example Hot Key Program

Hot keys are keystrokes that invoke terminate and stay resident programs. For example, an ALT + C key could be
defined as a hot key that calls a program that displays the time. Note that the hot key is detected inside most appli-
cations, but not at the DOS command line, where it may lock up the system if used. To detect a hot key, we usu-

218 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

ally hook into interrupt vector 9, which is the keyboard interrupt that occurs if any key is typed. This allows us to
test the keyboard and detect a hot key before the normal interrupt processes the keystroke.

A hot key is installed with a TSR program and an interrupt hook. To illustrate a hot key program that can be
useful, a program is developed that counts keystrokes. The keystroke counter program (see Example 7-35) is
useful in a business environment that uses computers for data entry or other tasks. With this type of program,
productivity can be assessed. The keystroke counter program counts each keystroke and only displays the count
when the ALT + K key is pressed. (It is important to note that this program spies on workers and it is the duty of
any company using the program to notify the worker. It may even be the responsibility of the company to obtain
permission from the worker before a program such as this is placed into service.)

This program can be modified to keep track of keystrokes by the hour or any other time unit. In this ex-
ample, the keystroke count (up to four billion) accumulates keystrokes for as long as power is applied to the com-
puter. The program also stores the installation time for security purposes. This is important because if a machine is
reset, the start time for this TSR will be reset.

This program hooks into interrupt 8 and 9 to count keys. The interrupt 9 hook detects the hot key (ALT + K)
and counts keystrokes. When the hot key is detected, the 18.2 Hz interrupt 8 activates the hot key program that dis-
plays the keystroke count and time of installation. This type of TSR is often called a pop-up program because it
pops up when the hot key is typed. Notice that this program uses INT 16H to test the keyboard. Never use a DOS
INT 21H function call within a TSR or interrupt hook because serious problems can arise. This program also uses
direct manipulation of the video text memory that begins at location B80OOH. This memory is organized with two
bytes per ASCII character. The first byte contains the ASCII code, and the following byte contains the background
and character color.

EXAMPLE 7-35

;A TSR program that counts keystrokes and reports the
;time of installation and number of accumulated
;keystrokes when the ALT-K key combination is activated.
;***requires an 80386 or newer microprocessor***

;XX for use on PC XXX

.MODEL TINY
.386
0000 .CODE
.STARTUP
0100 E9 0241 JMP INSTALL ;install VEC8 and VECY9
0103 00 HFLAG DB 0 ;Hot-key detected
0104 00000000 ADDS DD ? ;0ld vector 8 address
0108 00000000 ADD9 DD ? ;0ld vector 9 address
010C 00000000 COUNT DD 0 ;Keystroke counter
0110 00 HOUR DB ? ;start-up time
0111 00 MIN DB ?
0112 0 O SFLAG DB 0 ;start-up flag
0113 00 FLAGS8 DB 0 ;interrupt 8 busy
0114 25 KEY DB 25H ;scan code for K
0115 08 HMASK DB 8 ;alternate key mask
0116 08 MKEY DB 8 ;alternate key
0117 GOAO [SCRN DB 160 DUP (?) ;screen buffer
00
]
01B7 54 69 6D 65 MES1 DB 'Time = '
20 3D 20
01BE 20 20 20 4B MES2 DB ’ KeyStrokes = '/

65 79 53 74
72 6F 6B 65
73 20 3D 20

01CE VEC9 PROC FAR ;keyboard intercept

74

01CE
01CF
01D1
01D3
01D8
01pA
01DD
01DE
01EQ
01E3
01E4
01E9
01EE
01F0
01F0
01F1
01F4
01F9
01FD
01FE
01FE
01FF
0203
0204
0206
0207
0209
020D
0212
0213
0215
021a
021A
021B
021D
021F
0221
0223
0225
0227
0229
022A

0230
0232

0233
0233
0233
0239
023B
0240
0240

0246
0248

024E
0250
0255

INTERRUPT HOOKS

FB

66| 50

E4 60

2E: 3A 06 0114 R
75 16

B8 0000

1E

8E DS

A0 0417

1F

2E: 22 06 0115 R
2E: 3A 06 0116 R
74 2a

VEC91:

51

B9 0003

66| 2E: Al 010C R
66| 83 CO 01

27

VEC92:

9C

66| C1 C8 08

9D

14 00

27

E2 F5

66| Cc1 Cc8 08

66| 2E: A3 010C R
59

66| 58

2E: FF 2E 0108 R

VEC93:

FA

E4 61
oc 80
E6 61
24 F
E6 61
BO 20
E6 20
FB

2E: C6 06 0103 R
01

66| 58
CF

VEC9
VECS8

2E: 80 3E 0113 R

00

74 05

2E: FF 2E 0104 R

VEC81:

2E: 80 3E 0103 R
00

75 37

2E: 80 3E 0112 R
00

74 05

2E: FF 2E 0104 R

VEC82:

STI
PUSH
IN
CMP
JNE
MOV
PUSH
MOV
MOV
POP
AND
CMP
JE

PUSH
MOV
MOV
ADD
DAA

EAX

AL, 60H
AL,CS:KEY
VEC91

AX, 0

Ds

DS, AX
AL,DS: [417H]
DS

AL, CS:HMASK
AL,CS:MKEY
VEC93

CX

CX,3

EAX, CS:COUNT
EAX,1

PUSHF

ROR
POPF
ADC
DAA
LOOP
ROR
MOV
POP
POP
JMP

CLI
IN

OR

ouT
our
MOV
ouT
STI
MOV

POP
IRET

ENDP
PROC
CMP

Jz
JMP

CMP

JINZ
CMP

Jz

EAX, 8
AL, O

VEC92

EAX, 8
CS:COUNT, EAX
CX

EAX

CS:ADDY

AL, 61H
AL, 80H
61H, AL
AL, 7FH
61H, AL
AL, 20H
20H, AL

CS:HFLAG, 1

EAX

FAR
CS:FLAGS, 0

VEC81
CS:ADDS

CS:HFLAG, 0

VEC83
CS:SFLAG, 0

VEC82
CS:ADDS

;enable interrupts
;save EAX

;get scan code

jtest for K

;no hot-key

;address segment 0000
;save DS

;get shift/alternate data
;jisolate alternate key
;test for alternate key

;if hot-key found

;add one to BCD COUNT

;make result BCD

;propagate carry

;do normal interrupt
;if hot-key pressed
;interrupts off

;clear keyboard and
;throw away hot key

;reset keyboard interrupt

;enable interrupts
;indicate hot-key pressed

;clock tick interrupt

;1f not busy
;if busy

;if hot-key detected

;if start-up
;i1f not hot-key or start

219

220 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

0255
0256
025B

0261
0262
0263
0264
0265
0267
0269
026E
0273
0274
0275
0276

027C
027F
027F
0280
0285

028B
028C
028D
028E
0290
0292
0294
0296
0297
0298
029B
029B
029C
029E
029F
02A0
02a1
02A2
02A3
02A5
02A7
02AA
02AC
02AF
02B2
02B5
02B7
02B8
02B9
02BA
02BB
02BE
02C1
02C3
02C6
02Cé
02C7
02c8
02CA
02CF

9C
2E: FF 1E 0104 R
2E: C6 06 0113 R
01
FB
50
51
52
B4 02
CD 1A
2E: 88 2E 0110 R
2E: 88 OE 0111 R
5A
59
58
2E: C6 06 0112 R
01
E9 00AS
VEC83:
9C
2E: FF 1E 0104 R
2E: C6 06 0113 R
01
FB
50
53
B4 OF
CD 10
3c 03
76 05
5B
58
E9 0083
VEC84:
51
66| 52
57
56
1E
06
FC
8C C8
8E CO
B8 B800
8E D8
B9 00A0
BF 0117 R
BE 0000
F3/ A4
1E
06
1F
07
BF 0050
BE 01B7 R
B4 OF
B9 0007
VEC85:
AC
AB
E2 FC
2E: 8A 16 0111 R
2E: 8A 36 0110 R

PUSHF

CALL
MOV

STI
PUSH
PUSH
PUSH
MOV
INT
MoV
MOV
POP
POP
POP
MOV

JMP

CS:ADD8
CS:FLAGS, 1

AX

CcX

DX

AH, 2

1AH
CS:HOUR, CH
CS:MIN,CL
DX

CX

AX
CS:SFLAG, 1

VEC89

PUSHF

CALL
MOV

STI
PUSH
PUSH
MOV
INT
CMP
JBE
POP
POP
JMP

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
CLD
MOV
MOV
MOV
MOV
MOV
MOV
MOV
REP
PUSH
PUSH
POP
pPOoP
MOV
MOV
MOV
MOV

CS:ADDS8
CS:FLAGS, 1

AX

BX

AH, OFH
10H
AL, 3
VEC84
BX

AX
VEC88

CX
EDX
DI
SI
DS
ES

AX,Cs

ES,AX

AX, OB80OH

DS, AX

CX, 160
DI,OFFSET SCRN
SI,O0

MOVSB

Ds

ES

DS

ES

DI, 80
SI,0FFSET MES1
AH, OFH

CX,7

LODSB
STOSW

LOOP
MOV
MOV

VEC85
DL, CS:MIN
DH, CS:HOUR

;do old interru
;indicate busy

;enable interru

;get start-up t
;save hour
;save minute
;restore regist
;indicate start
;end it

;do hot-key dis
;do old interru

;indicate busy

;enable interru
;save registers

;get video mode

;1if DOS text mo
;ignore if grap

; for text mode

;address this s
;address text m

;save top scree

;swap segments

;start display

;load white on

;display "Time

pt 8

pts

ime

ers

ed

play
pt 8

pts

de
hics mode

egment
emory

n line

at center

black

7-4

02D4
02D8
02DB
02DD
02E0
02E2
02E3
02E6
02E8
02EB
02EE
02F1
02F1
02F2
02F3
02F5
02FB
02FE
0300
0303
0303
0305
0307
0309
030A
030D
0310
0313
0315
0316
0317
0318
0319
031B
031cC
031D
031E
031E

0324
0324

032a

032B

032B

032B
032F
0331
0333
0335
0336
0338
033A

VECS8

i

INTERRUPT HOOKS 221
66| C1 E2 10 SHL EDX, 16
B9 0002 MOV CX,2
B3 30 MOV BL, 30H
E8 004B CALL DISP ;display hours
BO 3A MOV AL,’':’
AB STOSW ;display colon
B9 0002 MOV CX,2
B3 80 MOV BL, 80H
E8 0040 CALL DISP ;display minutes
BE 01BE R MOV SI,OFFSET MES2 ;display KeyStrokes =
B9 0010 MOV CX,16
VEC86:
AC LODSB
AB STOSW
E2 FC LOOP VEC86
66| 2E: 8B 16 010C R MOV EDX,CS:COUNT ;get count
B9 0008 MOV CX,8
B3 30 MOV BL, 30H
E8 0028 CALL DISP ;display count
VEC87:
B4 01 MOV AH,1 ;wait for any key (BIOS)
CD 16 INT 16H
74 FA JZ VEC87
FC CLD
BE 0117 R MOV SI,OFFSET SCRN ;restore text
BF 0000 MOV DI,O0
B9 00AO MOV CX,160
F3/ A4 REP MOVSB
07 POP ES
1F POP DS
SE POP SI
SF POP DI
66| 5a POP EDX
59 POP CX
SB POP BX :
58 POP AX
VEC88:
2E: C6 06 0103 R MOV CS:HFLAG, 0 ;kill hot-key
00
VEC89:
2E: C6 06 0113 R MOV CS:FLAGS,0 ;indicate not busy
00
CF IRET
ENDP

;The DISP procedure displays the BCD contents of EDX.
;***input parameters***

iCX =
;BL =
;ES =
;DI =

DISP

66| Cc1 c2 04

8A C2
24 OF
04 30

number of digits

30H for blank leading zeros or 80H for no blanking
segment address of text mode display

offset address of text mode display

PROC NEAR ;display
ROL EDX, 4 ;position number
MOV AL, DL

AND AL, OFH

ADD AL,30H ;jconvert to ASCII

AB

3A C3
74 04
B3 80

STOSW ;store in text display
CMP AL,BL ;test for blanking
JE DISPl ;if blanking needed

MOV BL, 80H

;turn off blanking

292 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

033C EB 03 JMP DISP2 ;continue
033E DISPL:
033E 83 EF 02 SUB DI,2 ;blank digit
0341 DISP2:
0341 E2 E8 LOOP DISP
0343 C3 RET
0344 DISP ENDP
0344 INSTALL: ;install VEC8 and VECY9
0344 8C C8 MOV AX,CS ;load DS
0346 8E D8 MOV DS, AX
0348 B8 3508 MOV AX,3508H ;get current vector 8
034B CD 21 INT 21H ;and save it
034D 89 1E 0104 R MOV WORD PTR ADDS8, BX
0351 8C 06 0106 R MOV WORD PTR ADD8+2,ES
0355 B8 3509 MOV AX,3509H ;get current vector 9
0358 CD 21 INT 21H ;and save it
035A 89 1E 0108 R MOV WORD PTR ADDY, BX
035E 8C 06 010A R MOV WORD PTR ADD9+2,ES
0362 B8 2508 MOV AX,2508H
0365 BA 0233 R MOV DX,OFFSET VEC8 ;address interrupt procedure
0368 CD 21 INT 21H ;install vector 8
036A B8 2509 MOV AX,2509H
036D BA 01CE R MOV DX,OFFSET VEC9Y ;address interrupt procedure
0370 CD 21 INT 21H ;install vector 9
0372 BA 0344 R MOV DX,OFFSET INSTALL ;find paragraphs
0375 Cl1 EA 04 SHR DX, 4
0378 42 INC DX
0379 B8 3100 MOV AX,3100H ;set as a TSR
037C CD 21 INT 21H
END

Note that the pop-up portion of this program only functions in the text mode and will count any unseen keystrokes
that DOS generates. It also counts shift, alternate, and other keys as they are pressed and released. For example, the cap-
ital A will be counted as two or three keystrokes. This means that the count will be inflated. Even so, this program is useful
for counting keystrokes by a given operator. If the operator reboots the system, the new reboot time is displayed and the
count is cleared to zero.

The VECY interrupt service procedure intercepts all keystrokes. The IN AL,60H instruction reads the scan code
from the keyboard interface within the personal computer. This is then tested for the K scan code. (Refer to Table 7-3 for
the key scan codes.) If the K scan code is not found, the procedure increments the BCD count stored at location COUNT
and retums to the normal keyboard interrupt handler. If the K scan code is detected, the contents of memory location
0000:0417 are tested for the alternate key. If an alternate key is detected, the program sets the HFLAG to 1, tosses away
the hot key, and returns. Notice how the hot key is discarded by strobing I/O port number 61H. The keyboard is cleared by
sending a logic 1 in bit position 7 of port 61H, followed by sending a logic O in bit position 7. The interrupt controller in
the computer must also be cleared by sending a 20H out to I/O port number 20H.

The VECS interrupt service procedure tests the HFLAG for the hot key and the SFLAG for system startup. If the
SFLAG =0, the system has just been installed and the time is stored in HOUR and MIN. If the HFLAG = 1, a hot key was
detected by VEC9. The VEC8 procedure responds to the hot key by storing the contents of the top line of the text display
at memory array SCRN. Once the top line of the text display is stored, the message "Time = " is displayed, followed by
the installation time. Next, the message "KeyStrokes = " is displayed, followed by the BCD number stored in
COUNT. Recall that count is incremented each time VEC9 detects that a key is typed on the keyboard.

7-5

SUMMARY 223

7-5 SUMMARY

10.

1.

12.

. The assembler program assembles modules that contain PUBLIC variables and segments, plus EXTRN

(external) variables. The linker program links modules and library files to create a run-time program executed
from the DOS command line. The run-time program usually has the extension EXE.

The MACRO and ENDM directives create a new opcode for use in programs. These macros are similar to
procedures, except that there is no call or return. In place of them, the assembler inserts the code of the macro
sequence into a program each time it is invoked. Macros can include variables that pass information and data
to the macro sequence.

. The DOS INT 21H function call provides a method of using the keyboard and video display. Function number

06H, placed into register AH, provides an interface to the keyboard and display. If DL = OFFH, this function
tests the keyboard for a keystroke. If no keystroke is detected, it returns equal. If a keystroke is detected, the
standard ASCII character returns in AL. If an extended ASCII character is typed, it returns with AL = 00H,
where the function must again be called to return with the extended ASCII character in AL. To display a char-
acter, DL is loaded with the character and AH with 06H before the INT 21H is used in a program.

- Character strings are displayed by using function number 09H. The DS:DX register combination addresses

the character string, which must end with a $.

- The INT 10H instruction accesses video BIOS (basic I/O system) procedures that control the video display

and keyboard. The video BIOS functions are independent of DOS and function with any operating system.
The mouse driver is installed at interrupt vector 33H.

- Data conversion from binary to BCD is accomplished with the AAM instruction for numbers that are less than

100 or by repeated division by 10 for larger numbers. Once converted to BCD, a 30H is added to convert each
digit to ASCII code for the video display.

. When converting from an ASCII number to BCD, a 30H is subtracted from each digit. To obtain the binary

equivalent, we multiply by 10.

Lookup tables are used for code conversion with the XLAT instruction if the code is an eight-bit code. If the
code is wider than eight bits, a short procedure that accesses a lookup table provides the conversion. Lookup
tables are also used to hold addresses so that different parts of a program or different procedures can be
selected.

Interrupt hooks allow application software to gain access to or intercept an interrupt. We often hook into the
timer click interrupt (vector 8) or the keyboard interrupt (vector 9).

A terminate and stay resident (TSR) program is a program that remains in the memory and is often accessed
through a hooked interrupt, using either the timer click or a hot key.

A hot key is a key that activates a terminate and stay resident program through the keyboard interrupt hook.

7-6

A R R S

QUESTIONS AND PROBLEMS

. The assembler converts a source file to a(n) file.

. What files are generated from the source file TEST.ASM if it is processed by MASM?
. The linker program links object files and files to create an execution file.

. What does the PUBLIC directive indicate when placed in a program module?

. What does the EXTRN directive indicate when placed in a program module?

What directives appear with labels defined external?

224 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

10.
11.
12.
13.

14.

15.
16.

17.
18.

19.

20.

21.
22.

23.
24.
25.
26.

Describe how a library file works when it is linked to other object files by the linker program.

What assembler language directives delineate a macro sequence?

What is a macro sequence?

How are parameters transferred to a macro sequence?

Develop a macro called ADD32 that adds the 32-bit contents of DX-CX to the 32-bit contents of BX-AX.
How is the LOCAL directive used within a macro sequence?

Develop a macro called ADDLIST PARA1,PARA2 that adds the contents of PARA1 to PARA2. Each of
these parameters represents an area of memory. The number of bytes added are indicated by register CX
before the macro is invoked.

Develop a macro that sums a list of byte-sized data invoked by the macro ADDM LIST,LENGTH. The label
LIST is the starting address of the data block and length is the number of data added. The result must be a 16-
bit sum found in AX at the end of the macro sequence.

What is the purpose of the INCLUDE directive?

Develop a procedure called RANDOM. This procedure must return an eight-bit random number in register
CL at the end of the subroutine. (One way to generate a random number is to increment CL each time the DOS
function O6H tests the keyboard and finds no keystroke. In this way, a random number is generated.)
Develop a macro that uses the REPEAT statement to insert 10 NOP instructions in a program.

Develop a macro that uses the IFB/IFNB statements to test the parameter PARA in the macro DISP MACRO
PARA. If PARA is blank, display a carriage return/line feed combination. If PARA is not blank, display
PARA as an ASCII-coded character.

Develop a procedure that displays a character string that ends with a 00H. Your procedure must use the
DS:DX register to address the start of the character string. '

Develop a procedure that reads a key and displays the hexadecimal value of an extended ASCII-coded
keyboard character if it is typed. If a normal character is typed, ignore it.

Use BIOS INT 10H to develop a procedure that positions the cursor at line 3, column 6.

When a number is converted from binary to BCD, the instruction accomplishes the conversion,
provided the number is less than 100 decimal.

How is a large number (over 100 decimal) converted from binary to BCD?

A BCD digit is converted to ASCII code by adding a(n)
An ASCII-coded number is converted to BCD by subtracting
Develop a procedure that reads an ASCII number from the keyboard and stores it as a BCD number into
memory array DATA. The number ends when anything other than a number is typed.

27.Explain how a three-digit ASCII-coded number is converted to binary.

28.

29.

30.

31

32.

33.

Develop a procedure that converts all lowercase ASCII-coded letters into uppercase ASClIlI-coded letters. Your
procedure may not change any other character except the letters a-z.

Develop a lookup table that converts hexadecimal data 00H-0FH into the ASCII-coded characters that
represent the hexadecimal digits. Make sure to show the lookup table and any software required for the
conversion.

Develop a program sequence that jumps to memory location ONE if AL = 6, TWO if AL = 7, and
THREE if AL = 8.

Show how to use the XLAT instruction to access a lookup table called LOOK that is located in the stack
segment.

Develop a short sequence of instructions that place the line MOV AL,6 into a program if the contents
memory location BED are true. You must use the IF statement.

Write a program that displays the binary powers of 2 (in decimal) on the video screen for the powers 0
through 7. Your display shows 2" = value for each power of 2.

7-6

34.

35.

QUESTIONS AND PROBLEMS 225
Using the technique discussed in question number 16, develop a program that displays random numbers

between 1 and 47 (or whatever) for your state’s lottery.
Develop a program the hooks into interrupt vector 0 to display the following message on a divide error:

“Oops, you have attempted to divide by 0.”

CHAPTER 8
8086/8088 Hardware Specifications

INTRODUCTION

In this chapter, we describe the pin functions of both the 8086 and 8088 microprocessors and provide details on
the following hardware topics: clock generation, bus buffering, bus latching, timing, wait states, and minimum
mode operation versus maximum mode operation. The simple microprocessors are explained first, because of
their simple structures, as an introduction to the Intel microprocessor family.

Before it is possible to connect or interface anything to the microprocessor, it is necessary to understand
the pin functions and timing. Thus, the information in this chapter is essential to a complete understanding of
memory and I/O interfacing, which we cover in the later chapters of the text.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

Describe the function of each 8086 and 8088 pin.

Understand the microprocessor’s DC characteristics and indicate its fan-out to common logic families.
Use the clock generator chip (8284A) to provide the clock for the microprocessor.

. Connect buffers and latches to the buses.

. Interpret the timing diagrams.

. Describe wait states and connect the circuitry required to cause various numbers waits.

. Explain the difference between minimum and maximum mode operation.

8-1 PIN-OUTS AND THE PIN FUNCTIONS

In this section, we explain the function and (in certain instances) the multiple functions of each of the micro-
processor’s pins. In addition, we discuss the DC characteristics to provide a basis for understanding the later sec-
tions on buffering and latching.

226

8-1 PIN-OUTS AND THE PIN FUNCTIONS 227

MAX [MIN } MIN { MAX]
MODE | MODE MODE | MODE
N = K 40{] vce ano 1 40{7] vce
AD14 [} 2 39[Q ADI5 A4 2 397 A5
AD13 [] 3 38 Ates3 A13] 3 38[] A16/S3
AD12 [] 4 373 A17/S4 A2 4 37 A17/54
AD11 [5 36[7] A18/S5 A1 5 36] A18/S5
AD10 [6 a5 A19/56 A10 6 3517 A19/S6
AD9 O 7 347 BHE/S? XN = k4 34 5§50 (HIGH)
ADg [8 8088 4 7 MN/MX A8 [Js 8088 4 [0 MN/MX
wr e Y x [RD AD7 [9 U g 1 RD
Aps [10 31 [ROQ/GTO (HOLD) ADs [10 313 HOLD (RQ/GTO)
ADs [11 30{] ROQ/GT1 (HLDA) ADs [1 301 HLDA (RQ/GTI)
AD4 [12 29[L[OCK (WR) AD4 [12 29[] WR (LOCK)
ap3 [13 281 §2 (WIO) AD3 [13 283 oM (82
apz [14 27 § (DT/R) AD2 [14 27[0 DT/R (81)
a0t O 15 26[1 30 (DEN) AD1 [15 26[] DEN (50)
ADo O 16 25[7 QSO (ALE) apo [16 25{] ALE (QS0)
N [17 24[1 Qs1 (INTA) NMI [17 241 INTA (Qs1)
INTR [18 23{1 TEST INTR [18 23f] TEST
clk O3 19 22{1 READY clk O 19 22{7] READY
GNp [20 211 RESET GND 0 20 21[1 RESET
() (b)

FIGURE 8-1 (a) The pin-out of the 8086 microprocessor; (b) the pin-out of
the 8088 microprocessor.

The Pin-Out

Figure 8-1 illustrates the pin-outs of the 8086 and 8088 microprocessors. As a close comparison reveals, there is
virtually no difference between these two microprocessors—both are packaged in 40-pin dual in-line packages
(DIPs).

As mentioned in Chapter 1, the 8086 is a 16-bit microprocessor with a 16-bit data bus, and the 8088 is a 16-
bit microprocessor with an 8-bit data bus. (As the pin-outs show, the 8086 has pin connections ADO-ADI15, and
the 8088 has pin connections AD0-AD7.) Data bus width is therefore the only major difference between these mi-
Croprocessors.

There is, however, a minor difference in one of the control signals. The 8086 has an M/IO pin, and the 8088
has an IO/M pin. The only other hardware difference appears on Pin 34 of both chips: on the 8088, it is an SSO pin,
while on the 8086, it is a BHE/S7 pin.

Power Supply Requirements

Both the 8086 and 8088 microprocessors require +5.0 V with a supply voltage tolerance of +10 percent. The 8086
uses a maximum supply current of 360 mA, and the 8088 draws a maximum of 340 mA. Both microprocessors op-
erate in ambient temperatures of between 32° F and about 180° F. This range is not wide enough to be used out-
doors in the winter or even in the summer, but extended temperature-range versions of the 8086 and 8088
microprocessors are available. There is also a CMOS version, which requires a very low supply current and has an
extended temperature range. The 80C88 and 80C86 are CMOS versions that require only 10 mA of power supply
current and function in temperature extremes of ~40° F through +225° F.

DC Characteristics

It is impossible to connect anything to the pins of the microprocessor without knowing the input current requirement
for an input pin and the output current drive capability for an output pin. This knowledge allows the hardware designer
to select the proper interface components for use with the microprocessor without the fear of damaging anything.

228 CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

TABLE 8-1 Input characteristics of the 8086 and 8088
microprocessors.

Logic Level Voltage Current
0 0.8 V maximum +10 pA maximum
1 2.0 V minimum +10 yA maximum

TABLE 8-2 Output characteristics of the 8086 and 8088
MiCroprocessors.

Logic Level Voltage Current
0 0.45 V maximum 2.0 mA maximum
1 2.4V minimum —400 pA maximum

Input Characteristics. The input characteristics of these microprocessors are compatible with all the standard logic
components available today. Table 8-1 depicts the input voltage levels and the input current requirements for any input
pin on either microprocessor. The input current levels are very small because the inputs are the gates connections of
MOSFETs and represent only leakage currents.

Output Characteristics. Table 8-2 illustrates the output characteristics of all the output pins of these microprocessors.
The logic 1 voltage level of the 8086/8088 is compatible with that of most standard logic families, but the logic 0 level
is not. Standard logic circuits have a maximum logic 0 voltage of 0.4 V, and the 8086/8088 has a maximum of 045 V.
Thus, there is a difference of 0.05 V.

This difference reduces the noise immunity from a standard level of 400 mV (0.8 V —0.45 V) to 350 mV. (The
noise immunity is the difference between the logic 0 output voltage and the logic 0 input voltage levels.) This reduced
noise immunity may result in problems with long wire connections or too many loads. It is therefore recommended that
no more than 10 loads of any type or combination be connected to an output pin without buffering. If this loading factor
is exceeded, noise will begin to take its toll in timing problems.

Table 8-3 lists some of the more common logic families and the recommended fan-out from the 8086/8088. The
best choice of component types for the connection to an 8086/8088 output pin is a LS, 74ALS, or 74HC logic compo-
nent. Note that some of the fan-out currents calculate to more than 10 unit loads. It is therefore recommended that if a
fan-out of more than 10 unit loads is required, the system should be buffered.

Pin Connections

AD7-ADO The 8088 address/data bus lines compose the multiplexed address data bus of the 8088
and contain the rightmost eight bits of the memory address or /O port number whenever
ALE is active (logic 1) or data whenever ALE is active (logic 0). These pins are at their
high-impedance state during a hold acknowledge.

A15-A8 The 8088 address bus provides the upper-half memory address bits that are present
throughout a bus cycle. These address connections go to their high-impedance state during
a hold acknowledge.

AD15-ADS8 The 8086 address/data bus lines compose the upper multiplexed address/data bus on the

8086. These lines contain address bits A15-A8 whenever ALE is a logic 1, and data bus
connections D15--D8. These pins enter a high-impedance state whenever a hold
acknowledge occurs.

8-1 PIN-OUTS AND THE PIN FUNCTIONS 229

A19/56-A16/S3

READY

INTR

TEST

NMI

RESET

TABLE 8-3 Recommended fan-out from any 8086/8088 pin

connection.

Family Sink Current Source Current Fan-out
TTL (74) -1.6 mA 40 pA 1
TTL (74LS) —0.4 mA 20 pA 5
TTL (74S) —2.0 mA 50 pA 1 a
TTL (74ALS) —0.1 mA 20 pA 10
TTL (74AS) -0.5mA 25 uA 10
TTL (74F) -0.5mA 25 pA 10
CMOS (74HC) -10 A 10 HA 10
CMOS (CD4) —10 uA 10 pA 10
NMOS -10u 10 pA 10

The address/status bus bits are multiplexed to provide address signals A19-A16 and also
status bits S6-S3. These pins also attain a high-impedance state during the hold
acknowledge.

Status bit S6 always remains a logic 0, bit S5 indicates the condition of the IF flag bits, and
S4 and S3 show which segment is accessed during the current bus cycle. See Table 84 for
the truth table of §4 and S3. These two status bits can be used to address four separate IM
byte memory banks by decoding them as A21)

and A20. TABLE 8-4 Function of status bits
Whenever the read signal is a logic 0, the S3 and S4.

data bus is receptive to data from the memory

or I/O devices connected to the system. This ~ S4 S3 Function
pin floats to its high-impedance state during a
hold acknowledge. 0 0 Extra segment
. . . . 0 1 Stack segment
ms mpqt 1§ controlled Fo insert wait states 1 0 Code or no segment
into the timing of the microprocessor. If the 1 1 Data segment

READY pin is placed at a logic 0 level, the
microprocessor enters into wait states and
remains idle. If the READY pin is placed at a
logic 1 level, it has no effect on the operation of the microprocessor.

Interrupt request is used to request a hardware interrupt. If INTR is held high when IF =
1, the 8086/8088 enters an interrupt acknowledge cycle (INTA becomes active) after the
current instruction has complete execution.

The Test pin is an input that is tested by the WAIT instruction, If TEST is a logic 0, the
WAIT instruction functions as a NOP. If TEST is a logic 1, the WAIT instruction waits for
TEST to become a logic 0. This pin is most often connected to the 8087 numeric
COProCessor.

The non-maskable interrupt input is similar to INTR except that the NMI interrupt does
not check to see whether the IF flag bit is a logic 1. If NMI is activated, this interrupt input
uses interrupt vector 2.

The reset input causes the microprocessor to reset itself if this pin is held high for a
minimum of four clocking periods. Whenever the 8086 or 8088 is reset, it begins executing
instructions at memory location FFFFOH and disables future interrupts by clearing the IF
flag bit.

230 CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

CLK

Vcc
GND

MN/MX

BHE/S7

The clock pin provides the basic timing signal to the microprocessor. The clock signal
must have a duty cycle of 33 percent (high for one-third of the clocking period and low for
two-thirds) to provide proper internal timing for the 8086/8088.

This power supply input provides a +5.0 V, 10 % signal to the microprocessor.
The ground connection is the return for the power supply. Note that the 8086/8088

microprocessors have two pins labeled GND—both must be connected to ground for
proper operation.

The minimum/maximum mode pin selects either minimum mode or maximum mode
operation for the microprocessor. If minimum mode is selected, the MN/MX pin must be
connected directly to +5.0 V.

The bus high enable pin is used in the 8086 to enable the most-significant data bus bits
(D15-D8) during a read or a write operation. The state of S7 is always a logic 1.

Minimum Mode Pins. Minimum mode operation of the 8086/8088 is obtained by connecting the MN/MX pin diretly
to +5.0 V. Do not connect this pin to +5.0 V through a pull-up resistor or it will not function correctly.

10/M or M/IO

WR

INTA

ALE

DT/R

DEN
HOLD

HLDA
SSo

Maximum Mode Pins.
MN/MX pin to ground.

$2, S1, and SO

The IO0/M (8088) or the M/IO (8086) pin selects memory or 1/0. This pin
indicates that the microprocessor address bus contains either a memory address
or an I/0 port address. This pin is at its high-impedance state during a hold
acknowledge.

The write line is a strobe that indicates that the 8086/8088 is outputting data to a
memory or I/O device. During the time that the WR is a logic 0, the data bus
contains valid data for memory or 1/0. This pin floats to a high-impedance
during a hold acknowledge.

The interrupt acknowledge signal is a response to the INTR input pin. The
INTA pin is normally used to gate the interrupt vector number onto the data bus
in response to an interrupt request.

Address latch enable shows that the 8086/8088 address/data bus contains
address information. This address can be a memory address or an I/O port
number. Note that the ALE signal does not float during a hold acknowledge.

The data transmit/receive signal shows that the microprocessor data bus is
transmitting (DT/R = 1) or receiving (DT/R = 0) data. This signal is used to
enable external data bus buffers.

Data bus enable activates external data bus buffers.

The hold input requests a direct memory access (DMA). If the HOLD signal is a
logic 1, the microprocessor stops executing software and places its address, data,
and control bus at the high-impedance state. If the HOLD pin is a logic 0, the
microprocessor executes software normally.

Hold acknowledge indicates that the 8086/8088 has entered the hold state

The SSO status line is equivalent to the SO pin in maximum mode operation of the
microprocessor. This signal is combined with IO/M and DT/R to decode the
function of the current bus cycle (see Table 8-5)

In order to achieve maximum mode for use with external coprocessors, connect the

The status bits indicate the function of the current bus cycle. These signals are
normally decoded by the 8288 bus controller described later in this chapter.
Table 8—6 shows the function of these three status bits in the maximum mode.

8-2 CLOCK GENERATOR (8284A)

231

TABLE 8-5 Bus cycle status (8088) using SSO.

Function

Iom DT/R SS0
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Interrupt acknowledge
Memory read

Memory write

Halt

Opcode fetch

I/0 read

1/0O write

Passive

TABLE 8-6 Bus control functions generated by
the bus controller (8288) using S2, S1, and S0.

TABLE 8-7 Queue status bits.

Qs1 Qso Function

S2 S1 S0 Function

0 0 Queue is idle
0 0 0 interrupt acknowledge 0 1 First byte of opcode
0 0 1 /O read 1 0 Queue is empty
0 1 0 /O write 1 1 Subsequent byte of opcode
0 1 1 Halt
1 0 0 Opcode fetch
1 0 1 Memory read
1 1 0] Memory write
1 1 1 Passive

RO/GT1 and The request/grant pins request direct memory accesses (DMA) during

RO/GTO maximum mode operation. These lines are bi-directional, and are used to both
request and grant a DMA operation.

LOCK The lock output is used to lock peripherals off the system. This pin is activated by
using the LOCK: prefix on any instruction.

QS1 and QSO The queue status bits show the status of the internal instruction queue. These pins
are provided for access by the numeric coprocessor (8087). See Table 8—7 for the
operation of the queue status bits.

8-2 CLOCK GENERATOR (8284A)

This section describes the clock generator (8284A), the RESET signal, and introduces the READY signal for the
8086/8088 microprocessors. (The READY signal and its associated circuitry are treated in detail in Section 8-5.)

The 8284A Clock Generator

The 8284A is an ancillary component to the 8086/8088 microprocessors. Without the clock generator, many addi-
tional circuits are required to generate the clock (CLK) in an 8086/8088-based system. The 8284 A provides the

232 CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

following basic functions or signals: clock generation, RESET synchronization, ——
READY synchronization, and a TTL-level peripheral clock signal. Figure 8-2 illus- CS‘;NCE ; :3 chc
. PCLK X1
trates the pin-out of the 8284 A clock generator. N e
. . RDY1[]4 15 [JASYNC

Pin Functions. The 8284A is an 18-pin integrated circuit, designed specifically for reapv(]s 14 FEr

use with the 8086/8088 microprocessors. The following is a list of each pin and its rROv2(]6 13[FT

function: ARENZ(]7 120 osc
CLK[]8 11 [IRES

AEN1 and The address enable pins are provided to qualify the GNDEMJ RESET
bus ready signals, RDY1)

AEN2 and RDY?2, respectively. Section 8-5 illustrates the use FIGURE 8-2 The pin-
of these two pins, which are used to cause wait states, out of the 8284A clock
along with the RDY1 and RDY2 inputs. Wait states are generator.
generated by the READY pin of the 8086/8088
microprocessors, which is controlled by these two
inputs.

RDY1 and The bus ready inputs are provided, in conjunction with the AEN1 and AEN2

RDY2 pins, to cause wait states in an 8086/8088-based system.

ASYNC The ready synchronization selection input selects either one or two stages of
synchronization for the RDY1 and RDY2 inputs.

READY Ready is an output pin that connects to the 8086/8088 READY input. This signal
is synchronized with the RDY1 and RDY2 inputs.

X1 and X2 The crystal oscillator pins connect to an external crystal used as the timing source
for the clock generator and all its functions.

F/C The frequency/crystal select input chooses the clocking source for the 8284A. If
this pin is held high, an external clock is provided to the EFI input pin; if it is held
low, the internal crystal oscillator provides the timing signal.

EFI The external frequency input is used when the F/C pin is pulled high. EFI
supplies the timing whenever the F/C pin is high.

CLK The clock output pin provides the CLK input signal to the 8086/8088
microprocessors and other components in the system. The CLK pin has an output
signal that is one-third of the crystal or EFI input frequency, and has a 33-percent
duty cycle, which is required by the 8086/8088.

PCLK The peripheral clock signal is one-sixth the crystal or EFI input frequency, and
has a 50-percent duty cycle. The PCLK output provides a clock signal to the
peripheral equipment in the system.

0SsC The oscillator output is a TTL-level signal that is at the same frequency as the
crystal or EFI input. The OSC output provides an EFI input to other 8284A clock
generators in some multiple-processor systems.

RES The reset input is an active-low input to the 8284A. The RES pin is often connected to
an RC network that provides power-on resetting.

RESET The reset output is connected to the 8086/8088 RESET input pin.

CSYNC The clock synchronization pin is used whenever the EFT input provides
synchronization in systems with multiple processors. If the internal crystal oscillator is
used, this pin must be grounded.

GND The ground pin connects to gtound.

Vcc This power supply pin connects to +5.0 V with a tolerance of £10 percent.

8-2 CLOCK GENERATOR (8284A) 233

Operation of the 8284A

The 8284A is a relatively easy component to understand. Figure 8-3 illustrates the internal block diagram of the
8284A clock generator.

Operation of the Clock Section. The top half of the logic diagram represents the clock and reset synchronization
section of the 8284A clock generator. As the diagram shows, the crystal oscillator has two inputs: X1 and X2. If a
crystal is attached to X1 and X2, the oscillator generates a square-wave signal at the same frequency as the crystal.
The square-wave signal is fed to an AND gate and also to an inverting buffer that provides the OSC output signal.
The OSC signal is sometimes used as an EFI input to other 8284A circuits in a system.

An inspection of the AND gate reveals that when F/C is a logic 0, the oscillator output is steered through to
the divide-by-3 counter. If F/C is a logic 1, then EFI is steered through to the counter.

The output of the divide-by-3 counter generates the timing for ready synchronization, a signal for another
counter (divide-by-2), and the CLK signal to the 8086/8088 microprocessors. The CLK signal is also buffered be-
fore it leaves the clock generator. Notice that the output of the first counter feeds the second. These two cascaded
counters provide the divide-by-6 output at PCLK, the peripheral clock output.

Figure 8-4 shows how an 8284A is connected to the 8086/8088. Notice that F/C and CSYNC are grounded
to select the crystal oscillator; and that a 15 MHz crystal provides the normal 5 MHz clock signal to the 8086/8088,
as well as a 2.5 MHz peripheral clock signal.

Operation of the Reset Section. The reset section of the 8284A is very simple: It consists of a Schmitt trigger
buffer and a single D-type flip-flop circuit. The D-type flip-flop ensures that the timing requirements of the
8086/8088 RESET input are met. This circuit applies the RESET signal to the microprocessor on the negative edge
(1-to-0 transition) of each clock. The 8086/8088 microprocessors sample RESET at the positive edge (0-to-1 transi-
tion) of the clocks; therefore, this circuit meets the timing requirements of the 8086/8088.

Refer to Figure 8-4. Notice that an RC circuit provides a logic 0 to the RES input pin when power is first ap-
plied to the system. After a short time, the RES input becomes a logic 1 because the capacitor charges toward +5.0
V through the resistor. A push-button switch allows the microprocessor to be reset by the operator. Correct reset

RES In\ D
| o} rReser
icK
xi [
XTAL
OSCILLATOR [}
X2 osc
FIT
2 ¢+ +2 »rck
SYNC SYNC
EFI T T
CSYNC ‘
RDY1
—_D__ CLK
AENT
RDY2 1
CK?t cKt
AENZ D Q D Q- READY
FF1 FF2
ASYNC

FIGURE 8-3 The internal block diagram of the 8284A clock generator.

234 CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

5 Mhz
J_ X, CLK » CLK
15 Mhz EZZ3
-E_" X, 8086
or
FIC 8088
-...E[8284A
+5V CSYNC
RESET RESET
10K
e
RES
= +
I 10uF
= v
System
reset

FIGURE 84 The clock generator (8284A) and the 8086 and 8088 microprocessor illus-
trating the connection for the clock and reset signals. A 15 MHz crystal provides the 5 MHz
clock for the microprocessor.

timing requires the RESET input to become a logic 1 no later than four clocks after system power is applied, and
to be held high for at least 50 ws. The flip-flop makes certain that RESET goes high in four clocks, and the RC
time constant ensures that it stays high for at least 50 ps.

8-3 BUS BUFFERING AND LATCHING

Before the 8086/8088 microprocessors can be used with memory or /O interfaces, their multiplexed buses must
be demultiplexed. This section provides the detail required to demultiplex the buses and illustrates how the buses
are buffered for very large systems. (Because the maximum fan-out is 10, the system must be buffered if it con-
tains more than 10 other components.)

Demultiplexing the Buses

The address/data bus on the 8086/8088 is multiplexed (shared) to reduce the number of pins required for the 8086/8088
microprocessor integrated circuit. Unfortunately, this burdens the hardware designer with the task of extracting or de-
multiplexing information from these multiplexed pins.

Why not leave the buses multiplexed? Memory and /O require that the address remains valid and stable
throughout a read or write cycle. If the buses are multiplexed, the address changes at the memory and I/O, which causes
them to read or write data in the wrong locations.

All computer systems have three buses: (1) an address bus that provides the memory and I/O with the memory ad-
dress or the I/O port number, (2) a data bus that transfers data between the microprocessor and the memory and I/O in the
system, and (3) a control bus that provides control signals to the memory and /O. These buses must be present in order to
interface to memory and I/O.

8-3 BUS BUFFERING AND LATCHING 235

Ajoise OE — A
Aigsss , —e Ay
A\zsy 73 —e A}y
Ajessa G — Ay
gogs s Ais
A A
A],‘ - v Al"
An A
Ay —e A
Ao * Ao ¢ Address bus
Ay —e Ay
Ay —e Ay
—e Ay
e A,
e Aq
e A,
— e A,
——e A,
——e A,
,—-0 Ay
ALE G ‘373 OE 01
AD, 1 o D,
AD, —e D
Ds D,
AD, — e D,
AD, e D, Data bus
AD, —e D,
AD, —e D,
AD, —e D,
10/M —e IOM
RD - RD Control bus
MN/MX WR —e WR
+5V

FIGURE 8-5 The 8088 microprocessor shown with a demultiplexed address bus. This is
the model used to build many 8088-based systems.

Demultiplexing the 8088. Figure 8-5 illustrates the 8088 microprocessor and the components required to demulti-
plex its buses. In this case, two 74LS373 transparent latches are used to demultiplex the address/data bus connections
AD7-ADO and the multiplexed address/status connections A19/S6-A16/S3.

These transparent latches, which are like wires whenever the address latch enable pin (ALE) becomes a
logic 1, pass the inputs to the outputs. After a short time, ALE returns to its logic O condition, which causes the
latches to remember the inputs at the time of the change to a logic 0. In this case, A7-A0 are stored in the
bottom latch and A19-A16 are stored in the top latch. This yields a separate address bus with connections
A19-A0. These address connections allow the 8088 to address 1M bytes of memory space. The fact that the
data bus is separate allows it to be connected to any eight-bit peripheral device or memory component.

Demultiplexing the 8086. Like the 8088, the 8086 system requires separate address, data, and control buses.
It differs primarily in the number of multiplexed pins. In the 8088, only AD7-ADO and A19/S6-A16/S3 are

236 CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

multiplexed. In the 8086, the multiplexed pins include AD15-ADO0, A19/S6-A16/S3, and BHE/S7. All of
these signals must be demultiplexed.

Figure 8-6 illustratei_ a El_q:_mu]tipl_e_)ied 8086 with all three buses: address (A19—A0 and BHE), data
(D15-D0), and control (M/IO, RD, and WR).

l_-\f-

BHES7|H OE « BHE
Ajorse H - A
Awss ‘373 o Ay
Ajvsa * Ay
Aesi G * A

8086 '
* Ajs
- Ay
* Aj;
e A
* A)y
Ao } Address bus
Py Ag
— AS
— A7
Py A6
As
——e A,
——e—————— A,
——e A,
— e A,
%
ALE G G
‘373 OE bj_ ‘373 OE 01
AD,; { oDy
AD,, —e Dy
AD,; —e D)3
AD), o D,
AD,, Dy,
ADq * Do
ADy e Dy
ADyg * Dy
AD, oD, Data bus
ADq + D
ADs Dy
AD, - D,
AD, D,
AD, * U,
AD, — D,
ADy, * D,
M/10 + M10
RD —e RD Control bus
MNMX WR - WR
‘
+5V

FIGURE 8-6 The 8086 microprocessor shown with a demultiplexed address bus. This is the
model used to build many 8086-based systems.

84 BUS TIMING 237

This circuit shown in Figure 8-6 is almost identical to the one pictured in Figure 8-5, except that an ad-
ditional 74LS373 latch has been added to demultiplex the address/data bus pins AD15-AD8 and a BHE/S7
input has been added to the top 74LS373 to select the high-order memory bank in the 16-bit memory system of
the 8086. Here, the memory and I/O system see the 8086 as a device with a 20-bit address bus (A19-A0), a 16-
bit data bus (D15-D0), and a three- line control bus (M/IO), RD, and WR).

The Buffered System

If more than 10 unit loads are attached to any bus pin, the entire 8086 or 8088 system must be buffered. The
demultiplexed pins are already buffered by the 7418373 latches, which have been designed to drive the high-
capacitance buses encountered in microcomputer systems. The buffer’s output currents have been increased so
that more TTL unit loads may be driven: a logic O output provides up to 32 mA of sink current, and a logic 1
output provides up to 5.2 mA of source current. N

A fully buffered signal will introduce a timing delay to the system. This causes no difficulty unless
memory or I/O devices are used, which function at near the maximum speed of the bus. Section 8—4 discusses
this problem and the time delays involved in more detail.

The Fully Buffered 8088. Figure 8-7 depicts a fully buffered 8088 microprocessor. Notice that the remaining
eight address pins, A15-A8, use a 74L.S244 octal buffer; the eight data bus pins, D7-D0, use a 74LS245 octal
bi-directional bus buffer; and the control bus signals, IO/M, RD, and WR, use a 7418244 buffer. A fully-
buffered 8088 system requires two 741.S244s, one 74L.S245, and two 74L.S373s. The direction of the 741.S245
is controlled by the DT/R signal, and is enabled and disabled by the DEN signal.

The Fully Buffered 8086. Figure 8-8 illustrates a fully buffered 8086 microprocessor. Its address pins are al-
ready buffered by the 74L.S373 address latches; its data bus employs two 7418245 octal bi-directional bus
buffers; and the control bus signals, M/IO, RD, and WR, use a 7415244 buffer. A fully buffered 8086 system
requires one 7415244, two 74L.5245s, and three 74LS373s. The 8086 requires one more buffer than the 8088
because of the extra eight data bus connections, D15-D8. It also has a BHE signal that is buffered for memory-
bank selection.

8-4 BUS TIMING

It is essential to understand system bus timing before choosing a memory or /O device for interfacing to the 8086
or 8088 microprocessors. This section provides insight into the operation of the bus signals, and the basic read and
write timing of the 8086/8088. It is important to note that we discuss only the times that affect memory and /O in-
terfacing in this section.

Basic Bus Operation

The three buses of the 8086 and 8088—address, data, and control—function exactly the same way as those of any
other microprocessor. If data are written to the memory (see the simplified timing for write in Figure 8-9), the mi-
croprocessor outputs the memory address on the address bus, outputs the data to be written into memory on the
data bus, and issues a write (WR) to memory and IO/M = 0 for the 8088 and M/IO = 1 for the 8086. If data are read
from the memory (see the simplified timing for read in Figure 8-10), the microprocessor outputs the memory ad-
dress on the address bus, issues a read (RD) memory signal, and accepts the data via the data bus.

Timing in General

The 8086/8088 microprocessors use the memory and I/O in periods called bus cycles. Each bus cycle equals four
system-clocking periods (T states). Some new microprocessors divide the bus cycle into as few as two clocking

238 CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

oM OE | <10/M) Buffered
RD 244 RD control
WR < WR bus
Ajgsse OE Ao
Agss — Ajg
Ayzsa 373 Ay
Ajers3 —e A
G
8088
Als Aps
Ay, Ay
A * Ay
Ay 244 Aiz | Buffered
An An address
A Ao bus
Ag Ay
Ag OE —e Ag
L . Ay
= oA,
A,
- A,
—e A,
r * Ay
ALE G ‘373 OE Dl
AD, i A, B,}—e D,
AD¢ As Bo}—= D¢
ADy As Bs}—e Ds
AD, A, i B, —e D, Bu;fered
AD, As B,}—eD; ata
AD, A, B, }—e D, bus
AD, A, B, |—e D,
AD, Ay By |—= Dy
DT/R DEN G DIR
| b

FIGURE 8-7 A fully buffered 8088 microprocessor.

periods. If the clock is operated at 5 MHz (the basic operating frequency for these two microprocessors), one
8086/8088 bus cycle is complete in 800 ns. This means that the microprocessor reads or writes data between itself
and memory or I/O at a maximum rate of 1.25 million times a second. (Because of the internal queue, the
8086/8088 can execute 2.5 million instructions per second [MIPS] in bursts.) Other available versions of these mi-
croprocessors operate at much higher transfer rates due to higher clock frequencies.

During the first clocking period in a bus cycle, which is called T1, many things happen. The address of the
memory or I/O location is sent out via the address bus and the address/data bus connections. (The address/data bus
is multiplexed and sometimes contains memory-addressing information, sometimes data.) During T1, control

